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Schrödinger link between nonequilibrium thermodynamics and Fisher information
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It is known that equilibrium thermodynamics can be deduced from a constrained Fisher information extem-
izing process. We show here that, more generally, both nonequilibrium and equilibrium thermodynamics can be
obtained from such a Fisher treatment. Equilibrium thermodynamics corresponds to the ground-state solution,
and nonequilibrium thermodynamics corresponds to excited-state solutions, of a Schro¨dinger wave equation
~SWE!. That equation appears as an output of the constrained variational process that extremizes Fisher
information. Both equilibrium and nonequilibrium situations can thereby be tackled by one formalism that
clearly exhibits the fact that thermodynamics and quantum mechanics can both be expressed in terms of a
formal SWE, out of a common informational basis. As an application, we discuss viscosity in dilute gases.
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I. INTRODUCTION

The information content of a normalized probability di
tribution P( i ) i 51,...,N, where the indexi runs over the
states of the system one is trying to study, is given by Sh
non’s information measure~IM ! @1#

S52(
i 51

N

P~ i !ln@P~ i !#. ~1!

The choice of the logarithmic base fixes the informati
units. If the basis is 2, thenS is measured inbits. If one
chooses Boltzmann’s constant as the informational unit
identifies Shannon’s IM with the thermodynamic entrop
then the whole of statistical mechanics can be elegantly
formulated by extremization of Shannon’sS, subject to the
constraints imposed by thea priori information one may
possess concerning the system of interest@1#.

Now, the phenomenal success of thermodynamics and
tistical physics crucially depends upon certain necess
mathematical relationships involving energy and entro
~Legendre transform structure!. In the equilibrium situation
these relationships are also valid if one replacesSby Fisher’s
information measureI ~FIM! @2#. Using this measure@3#, the
entire Legendre-transform structure of thermodynamics
be reexpressed~i.e., I replaces the Boltzmann-ShannonS!. In
general, this abstract Legendre structure constitutes an e
tial ingredient that allows one to build up a statistical m
chanics. Fisher informationI allows then for such a construc
tion. Also, a desired concavity property, obeyed byI, further
demonstrates its utility as a statistical mechanics genera

The interested reader might want to consult works
Frieden, Soffer, Nikolov, Plastino, Silver, Hughes, Helstro
Holevo, Reginatto, Hall, Nettleton, Villani, Casas, and o
ers, that have shed much light upon the manifold phys
applications of Fisher’s information measure@4–26#. It is

*Present address: 665 Bienveneda Avenue, Pacific Palisa
CA 90272.
1063-651X/2002/66~4!/046128~8!/$20.00 66 0461
n-

d
,
e-

ta-
ry
y

n

en-
-

r.
y
,
-
al

interesting to note that the present work also covers the s
ject of the classical nonequilibrium description of simple fl
ids, recently dealt with in a quite interesting fashion from
different angle by Nettleton in@22#.

Here we will show that the variational treatment of Fish
information also accounts fornonequilibrium situations. See
also@26# in this regard. We willconnectFisher informationI
with nonequilibrium thermodynamics via the Schro¨dinger
equation~SWE!. Such a connection is of interest because
clearly shows that equilibrium and nonequilibrium stat
have a common informational origin that is expressed by
SWE. The same SWE also allows for quantum scenarios
even mixed quantum and thermodynamic scenarios.

The paper is organized as follows. For the benefit of
reader we review~i! our Fisher variational treatment of@2# in
Sec. II, and~ii ! the Rumer and Ryvkin treatment of Boltz
mann’s transport equation@27# in Sec. III. Our present for-
malism is developed in Sec. IV. Boltzmann’s equation in t
so-called relaxation approximation is the subject of Sec
while Sec. VI is devoted to the application of our prese
formalism to viscosity in dilute gases. Finally, some conc
sions are drawn in Sec. VII.

II. FISHER’S INFORMATION MEASURE FOR
TRANSLATION FAMILIES: A VARIATIONAL

TREATMENT

Consider a system that is specified by a physical par
eteru at a given timet. Let g(x,uut) describe the probability
density function~PDF! for this parameter at that time. O
course, by normalization,

E dx g~x,uut !51. ~2!

The Fisher information measure~FIM! I is of the form@28#

I 5E dx gF]g/du

g G2

, g5g~x,uut !. ~3!es,
©2002 The American Physical Society28-1
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The special case oftranslation familiesis of use. These
are monoparametric families of distributions of the form

g~x,uut !5p~uut !, u[x2u, ~4!

which are known up to the shift parameteru. Following
Mach’s principle, all members of the family possess identi
shapep(uut) ~there are no absolute origins!. Here FIM takes
the appearance@21,26#

I 5E dx
~]p/]x!2

p
, p5p~xut !. ~5!

Our present considerations assume one is dealing
coordinatesx that belong toR. Let us focus attention upon
the positive-definite, normalized PDFp(xut), evaluated at
the timet. It of course obeys the normalization

E dx p~xut !51. ~6!

Let the mean values

uk[^Ak& of M functions Ak~x!, k51,...,M ~7!

be measured at the timet. By definition,

^Ak& t5E dx Ak~x!p~xut !, k51,...,M . ~8!

These mean values will play the role of thermodynamic va
ables, as explained in@2#.

It is of importance to note that the prior knowledge~8!
represents information at the fixed time t. The problem we
attack is to find the PDFp that extremizesI subject to prior
conditions~6! and~7!. Our Fisher-based extremization pro
lem takes the form

dpH I ~p!2a^1&2(
k

M

lk^Ak& tJ 50, p[p~xut !, ~9!

at the given timet. Equation~9! is equivalent to

dpH E dxS ~]p/]x!2

p
2a f 2(

k

M

lkAkpD J 50, ~10!

where we have introduced the (M11) Lagrange multipliers
(a,l1¯lM), where each Lagrange multiplierlk[lk(t).
Variation leads now to

E dx dpH ~p!22S ]p

]x D 2

1
]

]x F ~2/p!
]p

]xG1a1(
k

M

lkAkJ
50, ~11!

and, on account of the arbitrariness ofdp,

H ~p!22S ]p

]x D 2

1
]

]x F ~2/p!
]p

]xG1a1(
k

M

lkAkJ 50.

~12!
04612
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It is clear that the normalization condition onp makesa a
function of thel i ’s. Let thenpI(x,$l%) be a solution of Eq.
~12!, where obviously$l% is an M-dimensioned Lagrange
multipliers vector. The extreme Fisher information is now
function of time,

I 5E dx
~]p/]x!2

p
[I ~ t !, ~13!

sincep5p(xut). Sincep extremizedI, we write

p[pI , pI[pI~xut !.

Let us now find the general solution of Eq.~12!. For the
sake of simplicity, let us define

G~x,t !5a1(
k

M

lk~ t !Ak~x!, ~14!

and recast Eq.~12! as

F] ln pI

]x G2

12
]2 ln pI

]x2 1G~x!50. ~15!

We introduce now the identification@13# pI5(c)2, recalling
that c(x) can always be assumed real for one-dimensio
problems@2#. Introduce now the new functions

v5
] ln c

]x
, c[c~x,t !, v[v~x,t !. ~16!

Then Eq.~15! simplifies to

v852H G

4
1v2J , ~17!

where the prime stands for the derivative with respect tox.
The above equation is a Riccati equation@29#. Introduction
further of @29#

u5expH Ex

dx@v#J , u5u~x,t !, ~18!

i.e.,

u5expH Ex

dx
d ln c

dx J 5c, ~19!

places Eq.~15! in the form of a Schro¨dinger wave equation
~SWE! @29#

2~1/2!c92~1/8!(
k

M

lk~ t !Akc5ac/8, ~20!

where the Lagrange multipliera/8 plays the role of an en
ergy eigenvalue, and the sum of thelkAk(x) is an effective
potential function

U5~1/8!(
k

M

lk~ t !Ak , U5U~x,t !. ~21!
8-2
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Note that no specific potential has been assumed, a
appropriate for thermodynamics. Also, we remark thatU is a
time-dependent potential function and will permit noneq
librium solutions. The specificAk(x) to be used here depen
upon the nature of the physical application at hand@cf. Eq.
~8!#. This application could be of either a classical or a qu
tum nature.

Also notice that Eq.~20! represents a boundary valu
problem, generally with multiple solutions, in contrast wi
the unique solution one obtains when employing Jayn
Shannon’s entropy in place of FIM@1#. As discussed in some
detail in @2# and @26#, the solution leading to the lowestI
value is the equilibrium one. That was the only solution d
cussed there. Here we wish to generalize the concom
discussion and ask the following: can we choose other s
tions?

III. RUMER AND RYVKIN’S APPROACH TO
NONEQUILIBRIUM THERMODYNAMICS

In Ref. @27#, Rumer and Ryvkin~RR! use the conven-
tional Boltzmann transport equation to build up nonequil
rium solutions. They take the following approach.

~i! Consider a nonequilibrium state of a gas after the la
of a time t large compared to the time of initial randomiz
tion. The timet is regarded asfixed.

~ii ! The timet is, also, small compared to the macrosco
relaxation timeT* for attaining the Maxwell-Boltzmann law
f 0 on velocities.

~iii ! At each point of the vessel containing the gas, a s
arises which is close to thelocal equilibrium state in which
f 0 is the Maxwell-Boltzmann law on velocities.

~iv! This allows one to expand the nonequilibrium dist
bution f (xut) as

f ~x,t !/ f 0511ex~x,t !, ~22!

wheree is small and the functionx is to be the object of our
endeavors.

~v! The unknown functionx(x,t) may itself be expanded
as a series of~orthogonal! Hermite-Gaussian polynomial
Hi(x) with coefficientsai(t) at the fixed timet,

x~x,t !5( ai~ t !Hi~x!. ~23!

It is important to remark that Hermite-Gaussian polynomi
are orthogonal with respect to a Gaussian kernel, i.e.,
equilibrium distribution. No other set of functions is or
thogonal~and complete! with respect to a Gaussian kern
function.

~vi! Because of orthogonality, the unknown coefficien
ai(t) relate linearly to appropriate~unknown! moments off
over velocity space~x space!.

~vii ! Substituting the expansion forf into the transport
equation and integrating over all velocities yields now a
of first-order differential equations in the moments~which
are generally a function of the fixed time valuet!.
04612
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~viii ! These are now solvable subject toknown initial con-
ditions, like our expectation values. The moments now b
come known~including any time dependence!.

~ix! As a consequence, the coefficientsai(t) of Eq. ~23!
are also known, which givesf.

What does thef as determined above represent? Acco
ing to Ref. @27#, the solution of the above system of equ
tions would be equivalent to the exact solution of Bolt
mann’s equation~if enough a priori information were
available!.

We emphasize that RR do not use an SWE in their
proach.

IV. CONNECTING THE SWE EXCITED SOLUTIONS TO
NONEQUILIBRIUM THERMODYNAMICS

Returning to our analysis, we ask the following: can t
excited SWE solutions to Eq.~20! represent nonequilibrium
states of thermodynamics@11,26#? An interesting discussion
of this point is provided in@22#. Here we try to answer this
question in a different fashion by considering, again, the c
in which x is a velocity and one seeks the nonequilibriu
probability p(xut).

Let excited solutionscn(x,t) to the SWE Eq.~20! be
identified by a subindex valuen.0. These amplitude func
tions are superpositions of Hermite-Gaussian polynomials
the form

cn~x,t !5(
i

bin~ t !Hi~x!, n51,2,... . ~24!

The total number of coefficientsbni(t) depends on how far
from equilibrium we are. At equilibrium there is only on
such coefficient.

We will show that the squares of these amplitudes ag
under certain conditions~see below!, with the known solu-
tions of the Boltzmann transport equation@11,21,23#. Our
coefficientsbin(t) are computed at the fixed timet at which
our input data^Ak& t are collected. While the ground-sta
solution of Eq.~20! gives the equilibrium states of thermo
dynamics@2#, the excited solutions of Eq.~20! will be shown
to give nonequilibrium states. For this to happen, our fu
tions cn(x,t) will have to be connected to the RRf (x,t) of
Eq. ~23! via the squaring operationcn

2(x,t).
Notice that the square of an expansion in Hermi

Gaussian polynomials is likewise a superposition
Hermite-Gaussian polynomials, with coefficientscin(t),

cn
2~x,t !5(

i
cin~ t !Hi~x!, n51,2,... . ~25!

We argue now to the effect that, for fixedn, the RR coeffi-
cientsai(t) and ourcin(t) are equal.

First of all, the RR coefficients are certainly compute
like ours, at afixed time t. That is, their momenta are evalu
ated at that time. Likewise ours@the ^Ak& of Eq. ~8!# can be
regarded as velocity momenta at that time as well.

The difference between the RR coefficients and ours
one of physical origin, as follows. RRsolve forthe velocity
moments at the fixed timet. TheseMRR moments are com-
puted using the RRai of Eq. ~23!. We, instead, collectas
experimental inputsthese velocity moments~at the fixed
8-3
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time t!. Thus, if theMRR momentscoincide with our experi-
mental inputs, necessarily theai(t) and thecin(t) have to
coincide well. Let us repeat: the RR moments at the timt
are physically correct by construction, since they actua
solve for them via use of the Boltzmann transport equati
The premise of our constrained Fisher information appro
is that its input constraints~here our velocity momentŝAk& t)
are correct, since they comefrom experiment. ~They calcu-
late, we measure.!

If there is no agreement between the RR moments and
experimental inputs, two possibilities come to mind:~a! we
are measuring inputs showing strong quantum effects, w
the RR treatment cannot handle such a case~being classical!,
or ~b! the numberM of available experimental data we use
inputs does not equal the numberMRR of RR computed mo-
ments. This possible disagreement is, however, of a log
rather than fundamental nature.

The required number of expansion coefficientsbi in Eq.
~24! is of interest. At equilibrium only one is needed (b0), as
that situation is described by a grand-canonical distribut
function that is Gaussian. Next, if the system is sufficien
close to equilibrium, then very few are needed. Hence, n
equilbrium cases should pose little numerical difficulty.

Summing up, the approach given in this paper will gi
exactly the same solutionsat the fixed (but arbitrary) time t
as does the RR approach. Therefore, for fixedn, our cin(t)’s
coincide with the RRai(t)’s and ourp(xut) coincide with
the RRf (x,t). This holds at each timet @cf. Eq.~8!#. For any
other time value,t8, say, we would have to input neŵAk&
values appropriate for that time. RR, instead, get coefficie
ai(t) valid for continuous timet, since they are using Bolt
zmann’s transport equation, which is a continuous one.
approach, by contrast, yields solutions valid at a discr
point of time t. This distinction, ‘‘discrete versus continu
ous,’’ does not compromise the validity of the Fishe
Schrödinger, nonequilibrium thermodynamics bridge that w
have built up here. In order to illustrate our formalism with
relevant application, we consider next a special instance
one often encounters in dealing with Boltzmann’s equatio

V. BOLTZMANN EQUATION IN THE RELAXATION
APPROXIMATION

With a view on developing a simple application of o
formalism, in considering the celebrated transport equa
of Boltzmann’s we will focus attention upon a gas in whi
the effect of molecular collisions is always to restore alocal
equilibrium situation described by the Maxwell-Boltzman
PDF f 0(r ,v) @30#. In other words, we assume that if th
molecular distribution is disturbed from the local equilibriu
so that the actual PDFf is different from f 0 , then the effect
of collisions is simply to restoref to the local equilibrium
value f 0 exponentially with a relaxation timet of the order
of the average time between molecular collisions.

In symbols, for fixedr ,v, f changes as a result of coll
sions according to

f ~ t !5 f 01@ f 2 f 0#exp2@ t/t#. ~26!
04612
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In these conditions, the ensuing Boltzmann equation
comes@30#

] f

]t
1(

i 51

3 Fv i

] f

]xi
1 v̇ i

] f

]v i
G52

f 2 f 0

t
, ~27!

a linear differential equation forf.
We consider now a situation slightly removed from eq

librium: f 5 f 01 f 1 with f 1! f 0 , so that Eq.~27! turns into

] f

]t
1(

i 51

3 Fv i

] f

]xi
1 v̇ i

] f

]v i
G52 f 1 /t. ~28!

The left-hand side of Eq.~28! is small, since the right-
hand side is, by definition, small. As a consequence, we
evaluate it by neglecting terms inf 1 and write

] f 0

]t
1(

i 51

3 Fv i

] f 0

]xi
1 v̇ i

] f 0

]v i
G52 f 1 /t. ~29!

Since f 0 is the Maxwell-Boltzmann PDF, independent
time @(] f 0 /]t)50#, we finally get the so-called Boltzman
equation in the relaxation approximation@30#,

(
i 51

3 Fv i

] f 0

]xi
1 v̇ i

] f 0

]v i
G52 f 1 /t. ~30!

VI. APPLICATION: VISCOSITY

As a concrete example of our abstract formalism we w
apply it here to the nonequilibrium problem posed by t
phenomenon of viscosity in dilute gases. We briefly disc
the corresponding phenomenology in Sec. VI A while in S
VI B, we find the distribution law@Eq. ~54!, see below# pre-
dicted by the Boltzmann transport theory. Because we h
been using the relatively little-known Rumer-Ryvkin a
proach@27#, we also show, in Sec. VI C, that the RR answ
~66! for the distribution function agrees with that of the Bo
zmann approach. Finally, in Sec. VI D we show that t
SWE approach gives the same answer as well, i.e., Eq.~66!.

A. Generalities

Imagine, in a gas, some plane with its normal pointi
along thez direction. The fluid below this plane exerts
mean force per unit area~stress! Pz on the fluid above the
plane. Conversely, the gas above the plane exerts a s
2Pz on the fluid below the plane. Thez component ofPz
measures the mean pressure^p& in the fluid, i.e.,Pzz5^p&.
When the fluid is in equilibrium~at rest or moving with
uniform velocity throughout!, then Pzz50 @30#. Consider a
nonequilibrium situation in which the gas does not mo
with uniform velocity throughout. In particular, imagine th
the fluid has a constant~in time! mean velocityux in the x
direction such thatux5ux(z). For specific examples, see, fo
instance,@30#. Now any layer of fluid below a planez
5const will exert a tangential stressPzx on the fluid above it.
If ]uz /]z is small, one has@30#
8-4
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Pzx52h
]uz

]z
, ~31!

whereh is called the viscosity coefficient. The phenomen
was first investigated by Maxwell, who showed that, for
dilute gas of particles of massm moving with mean velocity
^v&,

h}n^v&ml, ~32!

wheren is the number of molecules per unit volume andl is
the mean free path@30#.

Now consider any quantityx(r ,t) whose mean value is

^x~r ,t !&5
1

n~r ,t ! E d3v f ~r ,v,t !x~r ,t !, ~33!

with n(r ,t) the mean number of particles, irrespective
velocity, which at timet are located betweenr andr1dr . If
x(r ,t)[v(r ,t), the above relation yields the mean veloc
u(r ,t) of a molecule located nearr at time t. u(r ,t) de-
scribes the mean velocity of a flow of gas at a given po
i.e., the~macroscopic! hydrodynamical velocity. The peculia
velocity U of a molecule is defined in the fashion@30#

U5v2u, ~34!

so that

^U&50. ~35!

If one is interested in transport properties, the fluxes
various quantities become the focus of attention. Cons
the net amount of the quantityx transported above,~i! per
unit time and~ii ! per unit areaof an element of area oriente
along n̂, by molecules with velocityU due to their random
movement back and forth across this element of area.
x-associated fluxFn generated in this way is

Fn~r ,t !5E d3v f ~r ,v,t !@ n̂•U#x~r ,t !5n^@ n̂•U#x&. ~36!

For the present discussion we havex5mvx and n̂•U
5nUz . The ensuing flux gives then, precisely,Pzx @31#.
Sinceux does not depend upon the velocity,

Pzx5nm^Uzvx&5nm^Uz@ux1Ux#&5nm^UzUx&.
~37!

A simplephenomenologicalline of reasoning that utilizes th
so-called path integral approximation yields then@30#

Pzx52
nt

b

]ux

]z
, h5

nt

b
, ~38!

where t is the average time between molecular collisio
~relaxation time! andb51/kT.
04612
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B. Dealing with viscosity in the Boltzmann relaxation
approximation

We shall first discuss how to tackle the viscosity proble
along conventional, Boltzmann equation lines. To such
end assume that the effect of collisions is just to produc
local equilibrium distributionrelative to the gas moving with
a mean velocityux at the location of each collision. Th
relevant equilibrium Maxwell-Boltzmann PDF is

f 0~r ,v,t !5g~Ux ,Uy ,Uz!5g~U !,

Ux5vx2ux~z!, Uy5vy , Uz5vz ,

g~U !5nFmb

2p G3/2

exp@2bmU2/2#. ~39!

This PDF satisfies Eq.~27!. When a mean velocity gradi
ent exists, so thatux is such that its derivative with respect t
z does not vanish, Eq.~39! no longer complies with Eq.~27!.
Since the situation is time-independent, the ensuing~new!
PDF cannot depend upon time, but will depend onz ~the
direction of the velocity gradient!. There are no externa
forces, so thatv̇ vanishes. As a consequence, our Boltzma
equation~27! reduces to

vz

] f

]z
52t21~ f 2 f 0!. ~40!

One assumes that]vx /]z is small enough that] f /]z is also
small, so that

f 5 f 01 f 1 , f 1! f 0 . ~41!

As a result, we find that

f 152tvz

] f 0

]z
. ~42!

It is clear from Eq.~39! that

] f 0

]z
5

]g

]Ux

]Ux

]z
52

]g

]Ux

]ux

]z
, ~43!

while

]g

]Ux
52mbgUx , ~44!

a relation that we will use below. Here, it will become cle
that we need simply to write

] f 0

]z
52

]ux

]z

]g

]Ux
, ~45!

so that

f 15tvz

]ux

]z

]g

]Ux
52mbtvzUx

]ux

]z
f 0 , ~46!

and, finally,
8-5
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f 5 f 01tvz

]ux

]z

]g

]Ux
5 f 0H 12mbtvzUx

]ux

]z J . ~47!

Now, thezx component of the stress is

Pzx5mE d3v f UxUz . ~48!

As f 0 depends only on the absolute value ofU, the above
integral vanishes if one replacesf by f 0 in the preceding
integral for symmetry reasons. Thus,

Pzx5m
]ux

]z E d3v vzt
]g

]Ux
UxUz . ~49!

According to Eq.~33!, vz5Uz , so that, assuming that th
relaxation time does not depend upon velocity@30#,

Pzx5mt
]ux

]z E d3v
]g

]Ux
UxUz

2

5mt
]ux

]z E E dUydUzUz
2E dUx

]g

]Ux
Ux . ~50!

Call the far right integralA. Using Eq.~44!, we write it in
the fashion

A52mbE dUxgUx
2. ~51!

As a consequence, using the equipartition theorem

Pzx52m2bt
]ux

]z E d3U f 0Uz
2Ux

2

52m2bt
]ux

]z
n^Uz

2&^Ux
2&

52m2bt
]ux

]z
n~kT/m!252

]ux

]z
nt/b, ~52!

and, for the coefficient of viscosityh, we finally get

h5nt/b, ~53!

in agreement with Eq.~38!. Returning now to Eqs.~41! and
~46!, we stress that

f 5 f 0F12UzUxtmb
]ux

]z G . ~54!

C. The Rumer and Ryvkin treatment

The Rumer and Ryvkin technique@27# is not the conven-
tional one for dealing with the Boltzmann transport equati
However, it constitutes an essential ingredient in formulat
our Fisher treatment of nonequilibrium problems. It is th
convenient, for illustrative purposes, to discuss the man
of using it within the context of our viscosity example.

To such an end, we start by remembering that the first
Hermite polynomials are
04612
.
g
s
er

o

H051, H15
1

&
2x, ~55!

and, with

f~x,v!5FvpG1/4

exp@2x2/2#, ~56!

the first two members of the Gauss-Hermite basis~of L2) are

c05H0f, c15H1f. ~57!

Since we have@30#

n@mb/~2p!#1/2exp@2bmvz
2/2#5 f 0,z5nc0

2,

our variablesx,v in Eqs.~55! and ~56! are

v5mb/2, 2x5A@2bm#vz , ~58!

which allows us to recast Eq.~55! as

H051, H15A@bm#vz . ~59!

We deal now with a three-dimensional problem. The p
tinent Gauss-Hermite basis is the set of functions

H c0~vx!c0~vy!c0~vz!F11 (
l ,m,n

Hl~Ux!Hm~Uy!Hn~Uz!G J ,

~60!

wherel,m,n run over all non-negative integers.
As data we have here

Pzx5mE d3v f UzUx . ~61!

In the present instance, in view of Eq.~61!, the RR recipe
~22! to find f @27# should be

f ~U!5 f 0~U!@11aH1~Ux!H1~Uz!#5 f 0@11abmUxUz#,
~62!

with the coefficienta to be determined from the here releva
velocity moment~61! and the prior knowledge expressed b
Eq. ~38!. We thus evaluate Eq.~61! using the ansatz~62!,

Pzx5mE d3U$ f 0@11abmUxUz#%UzUx . ~63!

The integral*d3U$ f 0UxUz# vanishes by symmetry. Thus,

Pzx5am2bE d3U$ f 0Ux
2Uz

2%5am2bn^Ux
2&^Uz

2&

5
am2nb

@bm#2

5n
a

b
, ~64!

where the equipartition theorem has been employed.
Since Eqs.~64! and ~38! have to be equal,
8-6
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a52t
]ux

]z
~65!

and

f 5 f 0F12UxUzS t
]ux

]z
mb D G , ~66!

which is identical to Eq.~54!.

D. The SWE treatment

1. Ground state

We start with thez component of the probability ampli
tude that obeys

cz9/21l1~ t !~vz
2/8!cz52~a/8!cz , ~67!

and we set

l1~ t !/85v2/2 and ~a/8!52E,

so that the problem becomes time-independent. Our p
knowledge is the equipartition result

^vz
2&5

1

bm
, ~68!

which entails, as discussed above,v5bm/2, in view of the
fact that the ground state of our SWE reads

c0,z5FvpG1/4

exp@2vvz
2/2#. ~69!

Obviously, c0,z
2 5 f 0,z , the z component of the equilibrium

PDF of the preceding subsections.

2. Admixture of excited states

We assume now that we have the additional piece
knowledge~38! for Pzx . Our SWE obeys nowc5cxcycz
~and, also,c05c0,xc0,yc0,z),

c9/21v2~vz
2/2!c1aUxUzc5Ec, ~70!

that can be treated perturbatively in view of our knowled
of the problem. a!1 is here the perturbation coupling co
stant.

It is well known @31# that, if one perturbs the ground sta
of the one-dimensional harmonic-oscillator wave functi
with a linear term, only the first excited state enters the p
turbative series because of the selection rules@31#,

^c0Hn~x!uxuc0Hm~x!&5c1d~n,m11!1c2d~n,m21!,
~71!

wherec1 ,c2 are appropriate constants@31#, which entail that,
for n50 ~ground state!, only m51 ~first excited state! con-
tributes @31#. As a consequence, we can write~up to first
order in perturbation theory!
04612
or

f

e

r-

c5c01c15@11bH1~Ux!H1~Uz!#c0

5~11bbmUxUz!c0 , ~72!

and, up to first-order terms as well,

c25@112bH1~Ux!H1~Uz!#c05@112b~bm!UxUz#c0 .
~73!

We evaluate noŵcuUxUzuc&. For symmetry reasons i
is obvious that̂ c0uUxUzuc0&50. Thus,

^cuUxUzuc&52bnm2^c0uUx
2Uz

2uc0&. ~74!

Using now the equipartition result^Ux
2&0^Uz

2&05n/(mb)2,
we arrive at

Pzx52bbnm2^c0uUxUzuc0&52bn/b5an/b, a52b,

~75!

which coincides with the RR result obtained in the preced
subsection. Thus,

c25@11a~bm!UxUz#c0
2. ~76!

We have thereby recovered the RR result, which we pre
ously verified to be correct in Sec. VI C.

VII. CONCLUSIONS AND DISCUSSION

It is becoming increasingly evident@4–7,11,14,15,25,26#
that Fisher informationI is vital to the fundamental nature o
physics. In a previous effort@2#, we showed how theI con-
cept lays the foundation for thermodynamicsin the usual
equilibrium case. Here and in@26# we have shown that the
nonequilibrium thermodynamics case can likewise b
formed in this way. This considerably expands the horiz
envisioned in@2#.

The main result of this work is the establishment,
means of Fisher information, of a connection between n
equilibrium thermodynamics and quantum mechanics. T
emphasis here lies in the word ‘‘connection.’’ Why wou
such a link be of interest? Because it clearly shows that th
modynamics and quantum mechanics can both be expre
by a formal SWE~20!, out of a common informational basi
@21#.

The physical meaning of this SWE is flexible, since
‘‘potential function’’ U(x) originates in datâAk& t , via Eq.
~21!, of a physically generalnature. This depends upon th
application. Thê Ak& t are introduced into the theory asem-
pirical inputs. The approach also encompasses quantum
fects. In the latter cases, the effective potential function
cludes quantum effects. Also, the Planck constant\, which
does not explicitly appear in Eq.~20!, would appear in one or
more inputŝ Ak& t as, for example, would occur if the expe
tation value of the linear momentum of an electron we
8-7
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measured. The classical Boltzmann equation of the RR
proach would then of coursenot be useable. In this way, ou
approach encompasses both quantum and classical the
dynamic effects.
ys

s

a,

04612
p-

o-

Finally, and as a concrete example of the power of o
abstract formalism, we have successfully applied it here
the nonequilibrium problem posed by the phenomenon
viscosity in dilute gases.
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